Texture synthesis and image analogies

15-463, 15-663, 15-862
Computational Photography

http://graphics.cs.cmu.edu/courses/15-463 Fall 2017, Lecture S



Course announcements

* Please take Doodle for second make-up lecture, link on Piazza.

* Homework 3 is out.
- Due October 12th.
- Shorter, but longer bonus component.



Overview of today’s lecture

Reminder: non-local means.

Texture synthesis.

Texture by non-parametric sampling.
Image quilting.

Inpainting.

Texture transfer.

Image analogies.

Deep learning teaser.



Slide credits

Most of these slides were adapted from:
e Kris Kitani (15-463, Fall 2016).
Some slides were inspired or taken from:

 Fredo Durand (MIT).
* James Hays (Georgia Tech).



Reminder: non-local means



Redundancy in natural images




Non-local means

No need to stop at neighborhood. Instead search everywhere in the image.
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Last couple of classes: adding things to the image




This class: removing things from the image




This class: removing things from the image




Texture synthesis



Texture

* Depicts spatially repeating patterns
* Appears naturally and frequently




Texture

e Large variety of textures
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regular near-regular irregular near-stochastic stochastic




Texture synthesis

Goal: create new samples of a given texture.
Applications:

* holefilling

e virtual environments
* view expansion

e texturing surfaces




How would you do texture synthesis for this sample?
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How would you do texture synthesis for this sample?

random



Approach 1: probabilistic modeling

Basic idea:
 Compute statistics of input texture (e.g., histogram of edge filter responses).
 Generate a new texture that keeps these same statistics.

Heeger and Bergen, “Pyramid-based texture analysis/synthesis,” SIGGRAPH 1995
Simoncelli and Portilla, “Texture characterization via joint statistics of wavelet coefficient magnitudes,” ICIP 1998



Approach 1: probabilistic modeling

Probability distributions are hard to model well.

input

output

Any other ideas?



Texture by non-parametric sampling



Approach 2: sample from the image

Run template matching, get N best matches, and sample one at random.

—

N(p) L—

Neighborhood of p

P

What are sampling from?

Efros and Leung, “Texture synthesis by non-parametric sampling,” ICCV 1999



Approach 2: sample from the image

Run template matching, get N best matches, and sample one at random.

] i3 iﬁ-.gi
L

* Similar nearby images define a non-parametric PDF P(p|N(p))
* By selecting a random sample, we are sampling from this PDF

P

N(p)
Neighborhood of p

Efros and Leung, “Texture synthesis by non-parametric sampling,” ICCV 1999



Implementation details

How do you define patch similarity?



Implementation details

How do you define patch similarity?
* Gaussian-weighted SSD (emphasis on nearby pixels).

In what order should you synthesize?



Implementation details

How do you define patch similarity?
e Gaussian-weighted SSD (emphasis on nearby pixels).

In what order should you synthesize?
* Onion-peel ordering — pixels with most neighbors are synthesized first.

How do you synthesize from scratch?



Implementation details

How do you define patch similarity?
e Gaussian-weighted SSD (emphasis on nearby pixels).

In what order should you synthesize?
* Onion-peel ordering — pixels with most neighbors are synthesized first.

How do you synthesize from scratch?
* Pick a small patch at random from source.




|[deas from information theory

Generate English-sounding sentences by modeling the
probability of each word given the previous words (n-grams)

o __ 7

Large “n” will give more structured sentences

Claude Elwood Shannon
“I spent an interesting evening recently with a grain of salt.” (1916-2001)



Size of neighborhood window matters a lot

input




Size of neighborhood window matters a lot
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Texture synthesis algorithm

While 1mage not filled
1.Get unfilled pixels with filled neighbors
2.Sort by number of filled neighbor
3.For each pixel

a)Get top N matches of visible neighbor
(Patch Distance: Gausslan-welighted SSD)

b) Randomly select one of the matches

c) Copy pixel value



Examples

French canvas rafia weave




Examples

white bread brick wall
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Homage to Shannon
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Image extrapolation
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Summary

Texture synthesis using non-parametric sampling:
* Very simple

e Surprisingly good results

Synthesis is easier than analysis!

But very slow

Why is it so slow and how could we make it faster?



Image quilting



Summary

. non-parametric
sampling

<

synthesizing a block input image

Observation: neighboring pixels are highly correlated.

|dea: Instead of single pixels, synthesize entire blocks
* Exactly analogous procedure as before, except we now sample P(B | N(B))
* Much faster since we synthesize all pixels in a block at once

Efros and Freeman, “Image Quilting for Texture Synthesis and Transfer,” SIGGRAPH 2001



Dealing with boundaries

input texture E/ block

B1 B2 B1 B2

random placement neighboring blocks
of blocks constrained by overlap




Dealing with boundaries

input texture E/ block

B1 B2 B1| |B2 31| | B2
random placement neighboring blocks minimal error
of blocks constrained by overlap boundary cut

How can we achieve this?



Dealing with boundaries

overlapping blocks vertical boundary

overlap error minimum error boundary

How can we compute this boundary efficiently?



Examples




Examples
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Examples
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Examples




Examples




Failure case (Chernobyl tomatoes




Examples
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It even made the news
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Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had
digitally altered a photo that appeared in a national cable television
commercial. In the photo, a handful of soldiers were multiplied
many times.

Original photograph




Inpainting



Inpainting natural scenes

Criminisi et al., “Object removal by exemplar-based inpainting,” CVPR 2003



Key idea: Filling order matters

Toy inpainting example:

A

image with hole raster-scan order onion-peel

A

Any ideas on how to do better filling?



Key idea: Filling order matters

Toy inpainting example:

A

A

image with hole raster-scan order onion-peel gradient-sensitive order

A

Gradient-sensitive order: Fill a pixel that

* is surrounded by other known pixels; and
* is a continuation of a strong gradient or edge.



Examples

original with hole onion-peel fill gradient-sensitive



Examples

onion-pee| gradient-sensitive



Texture transfer



Texture transfer

Try to explain one object with bits and pieces of another object

How would you do this?

Efros and Freeman, “Image Quilting for Texture Synthesis and Transfer,” SIGGRAPH 2001



Texture transfer

Same as texture synthesis, except search for texture blocks by comparing
with target image patches (“constraints”)

constraint constraint

texture sample
texture sample



Some less creepy examples

texture transfer result

target itﬁage correspondence maps

source texture



Some less creepy (?) examples




Some less creepy examples
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Image analogies



Image analogies
Why stop at textures?

given pair of
image analogies

synthesized
Image

input image

Hertzmann et al., “Image analogies, ” SIGGRAPH 2001



Image analogies




How would you do this?




How would you do this?

Implementation:

Define a similarity between A and B

For each patch 1n B:

1.Find a matching patch 1n A, whose
corresponding A’ also fits in
well with existing patches in B’

2.Copy the patch in A" to B’

Algorithm is run iteratively (coarse-to-fine)




P, - —

unfiltered target

Blurring by analogies

(B)

filtered source (A’)
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filtered target (B’)



Edges by analogies

filtered source (A’)

unfiltered target (B) filtered target (B’)



Artistic filters

unfiltered target (B filtered target (B’



Colorization

filtered source (A’)
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unfiltered target (B) filtered target (B’)



“Texture by numbers”

unfiltered source (A) filtered source (A’)

unfiltered target (B) filtered target (B’)



“Texture by numbers”




Super-resolution

filtered target (B’)



Super-resolution

unfiltered target (B) filtéred target (B)



Deep learning teaser



A return to parametric models

o Z(Cf (,)
—_——t— J = ZF&.F_}&.
> |GLl |GE| < : PL |
TEm ol f
aFL AFL-1
> [ |

5{3 ﬁ Gradient T

descent

5 - df
Fi=F—o—

o

Step 1: forward pass Step 2: define loss wrt  Step 3: update white noise image
input image forward pass responses according to gradient descent



Texture synthesis examples

Source




Synthesised

Texture synthesis examples

Source

Source

Synthesised




Texture synthesis examples

Synthesised

Source




Texture synthesis examples




Texture synthesis exa

Synthesised

Source

Synthesised

7875

..

o 1A
_— *
r
B
b
|

,‘.
“ oy
24
y .i-.v
Ll L ph.
Vﬂz 4
h, ! v
A\ = O T
¥ A
6 Sl VA




Texture synthesis examples

Synthesised Sourc_e




Parameter number matters

A ~1k parameters ~10k parameters ~177k parameters ~852k parameters original
Yoo B i ' * e




Style transfter examples
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