
Looking for seams

15-463, 15-663, 15-862
Computational Photography

Fall 2017, Lecture 8http://graphics.cs.cmu.edu/courses/15-463

Course announcements

• Apologies for canceling Monday’s lecture.

• Homework 3 will be posted tonight.
- Due October 12th.

• Comments on Homework 2?

Overview of today’s lecture

• Back to cutting-and-pasting (and other motivating examples).

• Image as a graph.

• Shortest graph paths and Intelligent scissors.

• Graph-cuts and GrabCut.

• Some notes about cutting-and-pasting.

Slide credits

Most of these slides were adapted from:

• Kris Kitani (15-463, Fall 2016).

Some slides were inspired or taken from:

• Fredo Durand (MIT).
• James Hays (Georgia Tech).

Back to cutting-and-pasting (and other motivating
examples)

1. Extract Sprites

2. Blend them into the composite

Cut and paste procedure

1. Extract Sprites

2. Blend them into the composite

Cut and paste procedure

How do we do this?

1. Extract Sprites

Two different ways to think about the same thing:

• Finding seams (i.e., finding the pixels where to cut an image)

• Segmentation (i.e., splitting the image into “foreground” and “background”)

I will be using the two terms interchangeable

Cut and paste procedure

How do we do this?

Finding seams is also useful for:

image stitching

BallCam

retargeting

Seam Carving

segmentation

Lazy Snapping

Applications

Image as a graph

Nodes: pixels

Edges: Constraints between
neighboring pixels

Fundamental theme of today’s lecture

Images can be viewed as graphs

Graph-view of segmentation problem

Segmentation is node-labeling

Given pixel values and neighborhoods,
decide:
• which nodes to label as

foreground/background
or
• which nodes to label as seams
using graph algorithms

Nodes: pixels

Edges: Constraints between
neighboring pixels

Method Labeling problem Algorithm Intuition

Intelligent
scissors

label pixels as seams
Dijkstra’s shortest

path (dynamic
programming)

short path is a
good boundary

GrabCut
label pixels as

foreground/background
max-flow/min-cut

(graph cutting)
good region has
low cutting cost

Today we will cover:

Graph-view of segmentation problem

Shortest graph paths and intelligent scissors

Mortenson and Barrett (SIGGRAPH 1995)
(you can tell it’s old from the paper’s low quality teaser figure)

Intelligent scissors

Problem statement:
Given two seed points, find a good
boundary connecting them

Challenges:
• Make this real-time for interaction
• Define what makes a good boundary

Nodes: pixels

Edges: Constraints between
neighboring pixels

Graph-view of this problem

Images can be viewed as graphs

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1

4

11
3

2

3

5

1. Assign weights (costs) to edges

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1

4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1

4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1

4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

What algorithm can we use to find
the shortest path?

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1

4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

What algorithm can we use to find
the shortest path?
• Dijkstra’s algorithm (dynamic

programming)

Initialize, given seed s (pixel ID):

• cost(s) = 0 % total cost from seed to this point

• cost(!s) = big

• A = {all pixels} % set to be expanded

• prev(s)=undefined % pointer to pixel that leads to q=s

Precompute cost2(q, r) % cost between q to neighboring pixel r

Loop while A is not empty

1.q = pixel in A with lowest cost

2.Remove q from A

3.For each pixel r in neighborhood of q that is in A

a)cost_tmp = cost(q) + cost2(q,r) %this updates the costs

b)if (cost_tmp < cost(r))

i.cost(r) = cost_tmp

ii. prev(r) = q

Dijkstra’s shortest path algorithm

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1

4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

What algorithm can we use to find
the shortest path?
• Dijkstra’s algorithm (dynamic

programming)

How should we select the edge
weights to get good boundaries?

Selecting edge weights

Define boundary cost between
neighboring pixels:

1. Lower if an image edge is present
(e.g., as found by Sobel filtering).

2. Lower if the gradient magnitude at
that point is strong.

3. Lower if gradient is similar in
boundary direction.

Gradient magnitude

Edge image

Pixel-wise cost

2
5

Selecting edge weights

1.Use cursor as the “end” seed, and
always connect start seed to that

2.Every time the user clicks, use that
point as a new starting seed and repeat

Making it more interactive

h
tt

p
:/

/y
o

u
tu

.b
e/

X
_d

Z_
7

xA
cI

M

Examples

Seam collaging

Another use for image seam selection

Kwatra et al., Graphcut Textures: Image and Video Synthesis using Graph Cuts, SIGGRAPH 2003

Graph-view of this problem

Graph-view of image collaging:

1 2 1

4
1

6

9

1
3

1

4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

What edge weights would you use
for collaging?

Good places to cut:
• similar color in both images
• high gradient in both images

Selecting edge weights for seam collaging

Avidan and Shamir, Seam Carving for Content-Aware Image Resizing, SIGGRAPH 2007

Another use for image seam selection

Seam carving

Graph-view of this problem

Graph-view of seam carving:

1 2 1

4
1

6

9

1
3

1

4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

What edge weights would you use
for seam carving?

When blending multiple images of the same scene, moving objects become ghosts!

Question about blending (last lecture)

What can we do instead of blending?

Question about blending (last lecture)

Instead of blending the images, cut them and stitch them together!

When blending multiple images of the same scene, moving objects become ghosts!

When blending multiple images of the same scene, moving objects become ghosts!

Question about blending (last lecture)

What can we do instead of blending?

Another use for image seam selection:
• instead of blending the images, cut them and stitch them together

Seam stitching

alpha blending

AutoStitch

Seam stitching

Where will intelligent scissors work well, or have problems?

Examples

Graph-cuts and GrabCut

Rother et al., “Interactive Foreground Extraction with Iterated Graph Cuts,” SIGGRAPH 2004

grab cut paste

GrabCut

Only user input is the box!

user input

result

Magic Wand (198?) Intelligent scissors

regions boundary regions & boundary

GrabCut

Combining region and boundary information

GrabCut is a mixture of two components

1. Segmentation using graph cuts

2. Foreground-background modeling using unsupervised clustering

GrabCut is a mixture of two components

1. Segmentation using graph cuts

2. Foreground-background modeling using unsupervised clustering

Nodes: pixels

Edges: Constraints between
neighboring pixels

Segmentation using graph cuts

Remember: Graph-based view of images

Given its intensity
value, how likely is a

pixel to be foreground
or background?

Given their intensity values,
how likely two neighboring
pixels to have two labels?

Markov Random Field (MRF)
Assign foreground/background labels based on:






edgesji

ji

i

i
datayydataydataEnergy

,

21
),;,(),;(),;(y

What kind of cost functions
would you use for GrabCut?






edgesji

ji

i

i
datayydataydataEnergy

,

21
),;,(),;(),;(y

source (foreground label)

sink (background label)

cost to assign to
foreground

cost to assign to background

cost to split nodes

Solving MRFs using max-flow/min-cuts (graph cuts)






edgesji

ji

i

i
datayydataydataEnergy

,

21
),;,(),;(),;(y

source (foreground label)

sink (background label)

cost to assign to
foreground

cost to assign to background

cost to split nodes

Solving MRFs using max-flow/min-cuts (graph cuts)

unary potential

low cost

0 1

0 0 K

1 K 0

pairwise potential

A toy visual example

0: -logP(yi = 0 ; data)

1: -logP(yi = 1 ; data)

low cost

Graph-cuts segmentation

1. Define graph

– usually 4-connected or 8-connected

2. Set weights to foreground/background

3. Set weights for edges between pixels

4. GraphCut: Apply min-cut/max-flow algorithm

How would you determine these
for GrabCut?

GrabCut is a mixture of two components

1. Segmentation using graph cuts

2. Foreground-background modeling using unsupervised clustering

foreground

background

G

R

Given foreground/background labels

Foreground-background modeling

build a color model for both

Given a set of points, fit k Gaussians.

you can think the axes as ‘red’
and ‘blue’ channels

Learning color models

Given a set of points, fit k Gaussians.

you can think the axes as ‘red’
and ‘blue’ channels

Learning color models

How would you solve this problem?

Given k:

1.Select initial centroids at

random.

2.Assign each object to the cluster

with the nearest centroid.

3.Compute each centroid as the mean

of the objects assigned to it.

4.Repeat previous 2 steps until no

change.

Intuition: “hard” clustering using K-means

1. Select initial

centroids at random

K-means visualization

1. Select initial

centroids at random

2. Assign each object to

the cluster with the

nearest centroid.

K-means visualization

1. Select initial

centroids at random

2. Assign each object to

the cluster with the

nearest centroid.

3. Compute each centroid as

the mean of the objects

assigned to it (go to 2)

K-means visualization

1. Select initial

centroids at random

2. Assign each object to

the cluster with the

nearest centroid.

3. Compute each centroid as

the mean of the objects

assigned to it (go to 2)

2. Assign each object to

the cluster with the

nearest centroid.

Repeat previous 2 steps until no change

K-means visualization

1. Select initial

centroids at random

2. Assign each object to

the cluster with the

nearest centroid.

3. Compute each centroid as

the mean of the objects

assigned to it (go to 2)

2. Assign each object to

the cluster with the

nearest centroid.

K-means visualization

Given k:

1.Select initial centroids at

random.

2.Assign each object to the cluster

with the nearest centroid.

3.Compute each centroid as the mean

of the objects assigned to it.

4.Repeat previous 2 steps until no

change.

compute the probability of each object being in a cluster

weighed by the probability of being in that cluster

and covariance

^

E-step

M-step

Expectation-Maximization: “soft” version of K-means

Model: Mixture of Gaussians Algorithm: Expectation Maximization

Important result for GrabCut:
we can compute the likelihood of a pixel belonging to the foreground or background as:

E step

M step

Compute the expected log-
likelihood

Update parameters based
on likelihood

Unsupervised clustering

GrabCut is a mixture of two components
1. Segmentation using graph cuts

• Requires having foreground model

2. Foreground-background modeling using unsupervised clustering
• Requires having segmentation

What do we do?

GrabCut: iterate between two steps
1. Segmentation using graph cuts

• Requires having foreground model

2. Foreground-background modeling using unsupervised clustering
• Requires having segmentation

What do we do?

user specified box

iterated graph cut

user edit

output

Iteration can be interactive

Examples

Examples

What is easy or hard about these cases for graph cut-based segmentation?

Examples

Examples

Lazy Snapping
[Li et al. SIGGRAPH 2004]

Examples

Graph-cuts are a very general, very useful tool

• denoising
• stereo
• texture synthesis
• segmentation
• classification
• recognition
• …

Some notes about cutting-and-pasting

Real or composite, and why?

Real: Lahaina noon (or noon at subsolar point)

Real or composite, and why?

Composite: Inconsistent shadows

Composite: Inconsistent shadows

Kee et al., “Exposing Photo Manipulation with Inconsistent Shadows,” ToG 2014

Photorealistic compositing

Karsch et al., “Rendering Synthetic Objects into Legacy Photographs,” SIGGRAPH Asia 2011

Photorealistic compositing

Karsch et al., “Rendering Synthetic Objects into Legacy Photographs,” SIGGRAPH Asia 2011

Photorealistic compositing

Karsch et al., “Rendering Synthetic Objects into Legacy Photographs,” SIGGRAPH Asia 2011

Photorealistic compositing

Karsch et al., “Rendering Synthetic Objects into Legacy Photographs,” SIGGRAPH Asia 2011

Photorealistic compositing

Karsch et al., “Rendering Synthetic Objects into Legacy Photographs,” SIGGRAPH Asia 2011

Photorealistic compositing

Karsch et al., “Rendering Synthetic Objects into Legacy Photographs,” SIGGRAPH Asia 2011

Photorealistic compositing

How would you do this?

References
Basic reading:
• Szeliski textbook, Sections 5.1.3, 5.3.1, 9.3.2, 9.3.3, 10.4.3.
• Mortensen and Barrett, “Intelligent scissors for image composition,” SIGGRAPH 1995.

the intelligent scissors paper.
• Kwatra et al., Graphcut Textures: Image and Video Synthesis using Graph Cuts, SIGGRAPH 2003.

the seam collaging paper.
• Rother et al., “Interactive Foreground Extraction with Iterated Graph Cuts,” SIGGRAPH 2004.

the GrabCut paper.
• Avidan and Shamir, “Seam Carving for Content-aware Image Resizing,” SIGGRAPH 2007.

the seam carving paper.

Additional reading:
• Li et al., “Lazy Snapping,” SIGGRAPH 2004.

a popular variant of GrabCut.
• Felzenszwalb and Zabih, “Dynamic Programming and Graph Algorithms in Computer Vision,” PAMI 2010.

a great review of graph-based techniques, including shortest path and graph-cut, in computer vision.
• Kee et al., “Exposing photo manipulation with inconsistent shadows,” ToG 2013.

the paper demonstrating how image forgeries can be detecting by reasoning about the physical
accuracy of shadows in an image.

• Karsch et al., “Rendering synthetic objects into legacy photographs”, SIGGRAPH 2011.
the paper where the photorealistic compositing examples came from.

